sketch que muestra niveles jerárquicos de una estructura que emplea del 100% del material al 2% aligerandola, por Ed van Hinte y Adrian Beukers en wired.co.uk
Los residuos son un grave problema económico, social y ambiental en el presente siglo que en algunos casos, como el del plástico acompañara incluso a quienes aún no han nacido durante mucho mas tiempo, demasiado. La Naturaleza nos enseña que el residuo es el recurso de otro organismo y que de este modo se autoregula. Más del 90% del material vegetal caído (animal también) es finalmente descompuesto por bacterias, insectos, sus larvas, gusanos y hongos, que rompen el material devolviéndolo como nutrientes básicos al suelo y al ecosistema en los que todos se benefician. Pura economía colaborativa. Sin su presencia no podríamos dar ni un paso por un bosque pues el hedor de la materia putrefacta nos lo impediría, ya que se acumularía hasta cantidades impensables. El proceso bacteriano y fungico es fascinante, la materia orgánica se transforma en N, O2, C, H que nutrirán el suelo y al resto de los componentes del sistema. Una pequeña porción de bosque puede albergar 200 especies diferentes de hongos. Las bacterias, difícil de cuantificar. El escarabajo pelotero, uno de esos componentes, es un rápido y eficaz reciclador que lleva durante largas distancias bolas de estiércol diseñadas por el mismo para nutrir a sus larvas y de paso al suelo que habita mediante microorganismos incluidos en dichas bolas. No dejéis de ver este maravilloso video de como trabajan estos coleópteros.
sección de suelo con organismos descomponedores
Podría este eficaz proceso ser transferido a escala humana?. Una de las claves, hay muchas, es el empleo de un tipo de material, el biológico, en los procesos industriales ya que los problemas de la química de la descomposición ya han sido resueltos por la Naturaleza. Así parece que lo ha entendido el proyecto ABLE «Del cartón al caviar» que en sus ya 12 años de andadura, continúan sus éxitos. La base es la siguiente: el cartón se recolecta de numerosos negocios y se transforma la celulosa en material para los lechos de las camas de los caballos, donde acumulara heces y pelo. Este material una vez se descarta, se aloja en tanques de producción de lombrices que compostan los restos. Los excedentes de lombrices se emplean como alimento vivo para la producción de esturiones que se genera como carne y algunos ejemplares maduraran hasta producir caviar. Cuantos más niveles se imbrican en el proceso, más gente podrá emplear toda la energía del proceso ampliando los beneficios y la resiliencia del proceso.
Del cartón al caviar -close loop system- |creación propia|
Pocos son aún los negocios que siguen estos procesos (Kalundborg, Ecover en Mallorca, cerveceras,…) entre otras cosas porque muchos de nuestros materiales son biológicamente inertes debido a la introducción durante su manufactura de enlaces altamente energéticos desarrollados a elevadas temperaturas. Los materiales biológicos han evolucionado para poder ser reciclados y sus moléculas estabilizadas mediante enlaces que son suficientemente resistentes para su cometido específico así como a una temperatura y función mecánica determinada. Por tanto las proteínas de la mayoría de los animales empiezan a mostrar signos de rotura a 45C salvo aquellos que viven en las fumarolas o chimeneas oceánicas, que soportan muy altas temperaturas. Esto viene a decir que menos energía se requiere para digerir el material en los procesos digestivos y por tanto más energía disponible para otros aspectos como la búsqueda de alimento o la reproducción. Los materiales biológicos así como los procesos y las estructuras, son jerárquicos, es decir que se ensamblan desde un nivel molecular hacia otro mas complejo (post up·down). En estos casos las únicas fuerzas disponibles son las intermoleculares, que comparadas con los métodos industriales son muchos más débiles y de menor rango. Los ingenieros o arquitectos se pueden plantear la pregunta de porque es así y cual es el papel. Pero esa no es la cuestión pues los organismos emplean la jerarquía como única via posible para alcanzar estructuras más complejas de un modo intrínseco. Por ejemplo la rigidez o la fortaleza nada tiene que ver con el tamaño de sus componentes individualizados, si no mas bien en las cantidades y en las interacciones entre las fibras o los cristales que lo componen. En cambio en la resistencia a la fractura, especialmente en un material rígido, depende de modo relevante en la forma y el tamaño en cuyo caso las relaciones jerárquicas son significativas. Así areas o capas más blandas que el resto pueden afectar en gran medida al fallo de sus propiedades alargando en el tiempo o evitando posibles futuras fracturas. Esto lo ha estudiado de modo sobresaliente el Dr Claus Matteck y lo muestra por ejemplo en su publicación Thinking Tools After Nature de fácil comprensión.
algunas imágenes de triángulos de tensión analizados en la Naturaleza por C.Matteck
Algunas especies de moluscos bivalvos como Haliotis spp.pueden construir sus conchas protectoras en agua de mar, a bajas temperaturas mediante materiales locales abundantes. Estas conchas llegan a ser 3.000 veces más fuertes que sus componentes que a su vez son 200% más fuertes que nuestros materiales cerámicos más duros de alta tecnología. Estos maestros constructores depositan capas elásticas de material orgánico proteíco entre el carbonato de calcio inorgánico rígido tipo «ladrillo y mortero» a una escala nanometrica que le proporciona una resistencia extraordinarias. Esto sin duda marca un cambio de rumbo en la ingeniería, la arquitectura, o el propio diseño así como en la fabricación de nuevos materiales ya que en un futuro las condiciones ambientales marcarán las decisiones y estos se adaptarán, responderán e incluso evolucionarán en función de un ambiente cambiante, en una mezcla de tecnología, física y biología. Pero esta es una proyección humana. En la naturaleza, no hay «arriba» o «abajo», y no hay jerarquías. Sólo hay redes que anidan dentro de otras redes. Podeis profundizar mas en la materia una vez más con Tom McGeag que nos ilustra en su reciente artículo sobre las estructuras jerárquicas en la arquitectura, los materiales, la medicina y por supuesto el diseño.